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Abstract

NN T

Conditions are derived which are necessary for
stability of inconpressible elastic materials. These
are obtained by considering small shearing displace-

ments superimposed on a finitely deformed state of

the material.
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1. Introduction.

In the classical elasticity theory for infinitesimal
deformations, certain restrictions nust be placed on the elas-

tic moduli to ensure that the material be stable. For example,

in the case when the material is isotropic and incompressible,

the shear modulus pu must be positive. This condition en-

sures that the velocity of propagation of a plane sinusoidal

shear wave be real. If it were violated, a plane spatially-

sinusoical, shear disturbance, of initially infinitesimal

amplitude, would increase in amplitude with time even though no

forces are applied to the material. Accordingly, due to the

presence of Brownian fluctuations, the material could not exist
in the undeformed state.

Similarly, in the case of incompressible elastic mater-
ials which undergo finite deformations, material stability
requires that the strain-energy function be such that, for
each state of pure homogeneous deformation for which it is
assumed to be valid, the velocities of plane sinusoidal shear
waves of arbitrary direction of propagation and infinitesimal
amplitude must be real.

It has been shown that this implies that the strain-
energy function W per unit volume must satisfy the conditions

2y
Wl + }\A“2 >0

and

2 4
w11+ ZAAWl2 + AAW22
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where AA (A=1,2,3) are the principal extension ratios for
the pure homogeneous deformation, WA and WAB (A,B = 1,2)
denote the derivatives BW/aIA and aQW/BIABIB respectively

of W with respect to the strain invariants I and I

1 2
defined by

I. = 2%+ A2+ )2 I = A2x%+ )

2.2, .2
1T Mt At Ay s oAgt AgAgt AR
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The first of these corditions,which was obtained by

; Ericksen [1], ensures that a shear -ve, polarized in the

principal direction corresponding to the extension ratio AA

oo so RSt e

and propagated in an arbitrary direction perpendicular to

e e A G 3 AR R &8s AR

this principal direction, shall have a real velocity of propa-

£
Jhh

4 gation. The second, which was detrived by Sawyers and Rivlia

Lhah Kol

[2], ensures that a shear wave, polarized in the plane perpen-
dicular to the principal direction corresponding to the exten-
E sion ratio AA and prcpagating in an arbitrary direction in

this plane, shall have a real velocity of propagation.

A ok g A8 O

In the present paper, it is shown that both of these con- é?
¢ ditions can be derived from a single assumption. We consider

that an infinitesimal simple shear is superposed on the pure

o ! A 2 S Al

2 homogeneous deformation. The plane of shear is a principal
plane for the pure homogeneous deformation and the direction
of shear is an arbitrary direction in this plane. The assump-

tion is made that the incrementai shear modulus is positive.
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2. Basic Equations

We consider deformations which result from the super-

position of an infinitesimal deformation on a finite pure

homogeneous deformation. Let gi denote the coordinates in

a rectangular cartesian system x of a generic particle of

the body in its undeformed state. Let X be the coordinates

of the same particle in the deformed state. We may then write

x; = X, *+ eu. (1)

where € is a small parameter whose squares and higher

powers may be neglected, and

X, = ME o, X, = AEy, 5 Xg = A3g3 (2)

The A's 1in Eqn. 2 are the extension ratios associated with

the finite deformation. In Eqn. 1, the displacements u

i
are, in general, regarded as functions of Xl, X

2’ x3 L]
The finger strain tenscr C. , associated with the
*
resultant deformation, is given by
Cs5 = -—§xi —"2:3 = "—2Xk _sz X5,k X5,8 (3)
J m “m m m ’ Js

* The usual summation convention applies to repeated sub-

scripts. The comma notation ,i 1is used to denote partial
differentiation with respect to Xi
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We write

C.. = C.. + €cC. (4)

[
L
[
L]
[
L)

Skl aliti

- 12 _ 42 _ a2
Ciam M 0 Gop™ Ay s C33 >‘3 ’
(5)
Cij =0 for i # j
and
Cov = 226, u. + 8. u. )+ AP(S.u. .t S..u. )
ij 1V7i175,1 ji7i,1 2*7i2"j,2 je'i,2
(6)
£ 2206, u, * 6. .u.. )
3*71373,3 1J371,3
where dij is the Kronecker delta
Three scalar invariants TA (A=1,2,3) of the tensor
Cij are given by
- = = _ 1= = = = + -
I, = G5 0 Iy = 20635655 - C45C55) » Ig = det (Cjy) (7) E
E
Writing P
Ty=1I,+¢€i,, A=1,2,3 (8)

i




_ 12,492,422 - 2
Il—Al+7\2+l s I -AX+)\)\+>\

3 2 = AgAgtAgA A A,

and
i, = { +A5u, 5+ AJUg
i, = {é (A +2 )u AS(A§+A§)u2’2 + Ag(xi+kg)u3’3 (10)
i3 = i (up 1% 4y o* U3 3)

From Eqns. 8, 9 and 10, it follows that the condition

T3 = 1 for a deformation to be isochoric yields

A U S 0 (11)
Let N, and ﬁi , respectively, denote the components of

the unit vectors normal to a surface in tne material before and

after it has undergone the infinitesimal superposed deformation.

Then (see [3], for example)

Ni = N; *+ eng (12)

whers
' - \
ng = NyNpNowe o - Newy 5 (13

From Eqn.1 we readily obtain, neglecting terms of

higher degree in € than the first, the relation

I S A

9 - = 9 . - 14
X5 ox; % o ®%k,j I (14)
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The strain energy W per unit volume for an isotropic

incompressible elastic material depends on the strain ﬁi

}
only through the invariants Ti and Té , so that

W= W(Ti Té). The Cauchy stress tensor fi. is then given by
]

— —_—

T = 2L+ TWOT;, - T Tl - Py (15)

where P is an arbitrary hydrostatic pressure and we use

the notation
WA = BW/BTA , A=1,2 (1¢)

Noting that the invariants given by Eqn. 9 are those associa-
ted with the finite deformation, we make use of Eqn. 8 and

expand Wi and Wé in a power series about I, and I, .
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Thus,
Wl = Wl + E(Wllll + w1212)
(17)
W2 = W2 + E(wlgll + 1‘\]2212)
where
A TAML, 27 7 TAB | T, eT » ’
A"B 11
1’2
e TR i A e R R = = = -

e
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Writing

T..=1L1.,.+¢€0,. , P=P+¢gp (19)

and substituting from Eqns. 4, 8, 17 and 19 into 15 , we

find
By; = 2000+ TiW,)Cqsm WyChCil - PO (20)
and
055 = 20100+ I W )ess - WolCipcys* €33Cxky)
s W ey W (ThEg 1) + Wopl11o4C55 (21)
T (Wypdy+ Wopi )G Crsl - P8y

The traction Ti acting on a surface whose unit normal

is ﬁi » and measured per unit area of that surface, is given

by
T& = 'leJ (22)
Writing
fi =T, + ety (23)
and substituting from Eqns. 12 and 19 into 22 yiec'ds
T. = 2.,.N. , t. =o0..N. + Z..n; (24)
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In the absence of body forces the equation of

equilibrium is

3. .
=~ = 0 (25)
X.
J
Substitution from Eqns. 14 and 19 into this yields the
two equations
’ Lo . = oo Eil g = 2
| ij,j 0 md Ty5,5 7 U sy k 0 (26)
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3. Some Preliminary Results

We now assume that the superposed infinitesimal

deforma-

tion is a simple shear in the plane perpendicular to the 3-

direction.

The displacement u, associated with this deformation is
given by

u, = K(AQCOSG - X151ne)cose

=
1}

5 K(X2C056 - X151pe)51n9 (27)

where «k 1is the amount of shear and © 1is the angle between

the direction of shear and the xl-axis, as shown in Fig.1l.

We remark that the displacement described in Eqn. 27 satisfies

the incompressibility requirement given by Eqn.11.

If k 1is positive, then the direction of shear is in

the direction of the unit vector K with components

£ 0= cose |, K2 = ging , K, =0 (28)

Let N be a unit vector in the plane of shear perpendicular

to K , the components of N being given by

Nl = - sin@ , N2 = cosd , N3 =0 (29)

We consider a material plane in the body which has undergone

et B sttt it e bl st s A A S

)
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the pure homogencsous deformation described by Eqn. 2. The
unit normal ﬁ to this plane after the superposition of the
infinitesimal shear is given by Eqn. 12, where, from

Eqns. 13, 27 and 2V,
n=20 (30)
We substitute from Eqns. 27 into 6 and 0 and obtain

-ZAEK sinBcosé , c,, = Zlgm sigzvcesd

€2 7 22
_ 2 2,  ,2_..2 _ _ -
Cip = K(Azcos 6 A151n 8) , sy €31 C33 0, (31)
N - 2_.2
i, = A3 i, 2X3K 51n6cose(12 Al)

We substitute from Eqns. 5 and 9 in Eqn. 20 and obtain
the components of the Cauchy stress associated with the

finite homogeneous deformation. Thus

2

™
[
[
]
=

{wl + (0% xe)wg}- p

2 2
22 {“’1 + 02 Al)wz} - p (32)

N o

2 2 )
A3 {wl + (Af xa)wa} p

AP Dibakesd imdira
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Similarly, substitution from Eqns. 5, 9 and 31 in Eqn. 21

gives the additional stresses that arise from the deforma-

tion described by Eqn. 27. Thus,

_ 2. (12222 2
0., = - 4A]sinbcos6 [WL+A3W2+LAI-AE){W11+2A3W12

b 2
AW, F A (W o+ 22)}] - P

_ 2. - 2 2 ,2 2
Opp = 4KA251n6cose[Wl+ A3W2—(ll-12) {W 2A3W12

u 2
# Ay, + 2300 A3w22)}] p (33)

_ 2 . z 42 2,.,2,,¢2
Ogq = 4KA351necose(A2~Al)[W2+Wll+(Al+A2+A3)W12

2 2.4,2
+ ABWEO(A1+A2)]

_ 2 2 e . 2
0., = 2c(12cos?o-aZsin®e) [w +x3we]

Op3 = 037 =0

Bearing in mind that Al,AE,A3, k and 6 are constants,

it follows that the stresses given by Eqns. 3Z and 33 satisfy
the equilibrium conditions of Eqn. 26 pr:vided P and p are
constants.,

The traction acting on a plane with unit nermal N can
be obtained by substituting from Eqn. 29 into 24. By making
use of Eqn. 30 and the fact that certain components of the

stresses vanish (see Eqns. 32 and 33), we obtain

Tl = -3ind le , T2 = cosf 222 s T3 =0 (34)

- e ac o s S P - A 1
ey 9 LA
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and
tl = -smeoll + c056012
t2 = -smed12 + c056022 (35)

Let S denote the component of the traction vector in

the shear direction K . Then, from Eqn. 23,

S =TK = (Tj+stj)Kj (36)
Writing
S =85+ es (37)

and substituting from Eqns. 28, 34, and 35 into 36, we obtain

N
1

sinécosée{Z h

22 11)

(38)

w0
1

o s X 2, .2
s-necose(022 oll) + Gle(cos 8-sin“8)

Expressions for S and s in terms of material properties can
be obtained by substituting from Eqns. 32 and 33 into 38.

Introducing the notation

=
]

. 2
2(W *AH,)
(39)

hN

|
!

4 . +A 2-: +3\'?g,: +1
(Al 2) (g *2R% X

312 73 22)

i
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we then obtain

wn
"

(Kg-ki)M sin6cos6

th
i

K{M(Aisinge + Agcosze)

+ (Al-Ae)em sin26c0526} (40)
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4, Criteria for Material Stability

In order that the material be stable for given values of
Al,le, and A3 » it is necessary that the superimposed -ac-
tion have a positive component in the direction of the super-
imposed shear deformation, i.e., the shear modulus must be
positive.

According to Eqns. 36 and 37, s is the extra shear
traction that is required to produce the deformation given by

Eqn. 27. Since « 1is the amount of shear, we define the shear

modulus u by
p = ~/x (41)
Then from Eqn. 40 we obtain
u = M(Aisin26+kgcosee)
+ (Al-x2)2m sin26c0526 (42)

and it follows that a necessary condition for material stab-
ility is u > 0 for all possible values of 6 . In particu-

lar, if 6 assumes any of the values (O,%,n,%}) then u > 0

if and only if
M>0 (43)

For the following discussion we assume that Eqn. 43 is

satisfied.




3 . e . - e 2 i = .

R EL A8
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s A

Then if Al Ae » it follows that u > 0 regardless
of the value of m . But if A # A, and if

m(Al-Az)2 = - M(Al+12)2 (44)

then Eqn. 42 becomes
= . 2 2,52 '
u = M(X151n e-lzccs 8) (45)

and it follows that 1y is non-negative for all values of

& and vanishes if
tan 6 = # /Xé7ﬁ; (46)

It is clear from Eqn. 42 that for any fixed value of 6

’

(other than those for which either sin & or cos 6 vanish)
u  increases as m(Al—Ae)e increases and decreases as

m(Al-Az)2 decreases. Thus, the condition p > 0 for all
values of 6 1is satisfied if

2
(A, *2,)

2
(A=)

m>-M (47)
However, if m()\l-)\z)2 < - M(A1+A2)2 s then u< 0 for 6
given by Eqn. 46, and we conclude that the material is in-
herently unstable.

We have derived two conditions that are necessary for

material stability. By substitution from Eqn. 39 in 43 and

47, these are found to be

|
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W, o+ %W >0

32
W, +ASW | “e
+
2 4 o171 7372
Wy, + 2050, + A0, > - 3 2
(A, -2,)

Further conditions analogous to those in Eqn. 48 can be
derived by considering superposed shearing deformations similar

to that of Eqn. 27, for which the shear planes are the 23 and

31 planes, respectively. An analysis which rarallels that

3 H
F { given above then yields necessary conditions for material stab-

ility in the forms

3 2 !
E Wy o+ 23w, > 0 |
\ (49) ;
W.+ASW %
2 4 1 "t 2
Wy ¥ 2200 v MW, > - 7 R §
2 "3 |
and é
2
W+ ASH, > 0
(50)
2
W.+A2W
2 I 1 MW,
Wyp * 2MW, * AW, > - 5 3
(7\3'>~1)

The conditions given in Eqns. 48, 49 and 50 may be re-
cast in the succinct forms shown in the Introducticn by

employing Eqns. 9 and 11.
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Figure Caption

Figure 1. Geometry of a small superimposed shearing deforma-
tion.
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